USN

17ME34

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Mechanics of Materials

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define :
(i) Hook's law
(ii) Poisson's ratio
(iii) Modulus of rigidity
(iv) Modulus of elasticity
(v) Bulk modulus.
(05 Marks)
b. Draw stress-strain diagram of a mild steel and name the salient points.
(05 Marks)
c. A brass bar having cross-sectional area $300 \mathrm{~mm}^{2}$ is subjected to axial forces as shown in Fig.Q1(c). Find the total elongation of the bar, $\mathrm{E}=84 \mathrm{GPa}$.
(10 Marks)

OR
2 a. Define :
(i) Elasticity
(ii) Plasticity
(iii) Stiffness (iv) Resilience
(v) Toughness ($\mathbf{0 5}$ Marks)
b. Derive a relation between modulus of elasticity, modulus of rigidity and bulk modulus.
(05 Marks)
c. At room temperature the gap between two bars as shown in Fig.Q2(c) is 0.25 mm . What are the stresses induced in the bars, if temperature rise is $35^{\circ} \mathrm{C}$. Given $\mathrm{A}_{\mathrm{A}}=1000 \mathrm{~mm}^{2}$, $A_{B}=800 \mathrm{~mm}^{2}, E_{A}=2 \times 10^{5} \mathrm{MPa}, \mathrm{E}_{\mathrm{B}}=1 \times 10^{5} \mathrm{MPa}, \alpha_{A}=12 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}, \alpha_{B}=23 \times 10^{-6}$ per $^{\circ} \mathrm{C}$.

Fig.Q2(c)

Module-2

3 a. Define principal plane and principal stress.
(02 Marks)
b. Derive an expression for hoop stress and longitudinal stress for thin cylinder.
(06 Marks)
c. At a point in a strained material the stress condition shown in Fig.Q3(c). Find
(i) Normal and shear stresses on the inclined plane AB.
(ii) Principal stress and principal planes
(iii) Maximum shear stress.

Fig.Q3(c)
1 of 2

OR

17ME34

4 a. Derive Lame's equation for thick cylinder.
(08 Marks)
b. A pipe of 500 mm internal diameter and 75 mm thick is filled with a fluid at a pressure of $6 \mathrm{~N} / \mathrm{mm}^{2}$. Find the maximum and minimum hoop stress across the cross-section of the cylinder. Also sketch the radial pressure and hoop stress distribution across the section.
(12 Marks)

Module-3

5
a. Derive the relations between intensity of load ' W ', shear force ' F ' and bending moment ' M ' in the beam.
(06 Marks)
b. Draw bending moment and shear force diagram for the beam shown in Fig.Q5(b). Clearly indicate the point of contraflexure.
(14 Marks)

OR

6 a. Derive the relationship between bending stress and radius of curvature.
(06 Marks)
b. The T-section shown in Fig.Q6(b) is used as a simply supported beam over a span of 4 meters. It carries an uniformly distributed load of $8 \mathrm{kN} / \mathrm{m}$ over its entire span. Calculate the maximum tensile and compressive stresses occurring in the section.
(14 Marks)

7 a. Derive the torsional equation.
(10 Marks)
b. A solid shaft rotating at 1000 rpm transmits 50 kW . Maximum torque is more than 20% of mean torque. Material of the shaft had the allowable shear stress of 50 MPa and $\mathrm{G}=80 \mathrm{GPa}$. Angle of twist in the shaft should not exceed 1° per meter length. Determine the diameter of the shaft.
(10 Marks)

OR

8 a. Derive the expression for crippling load for a column when both ends are hinged. ($\mathbf{1 0}$ Marks)
b. Determine the crippling load for a T-section of dimensions $100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 20 \mathrm{~mm}$ and length of column 12 m with both ends fixed. Take $\mathrm{E}=210 \mathrm{GPa}$.
(10 Marks)

Module-5

9 a. Explain: (i) Castigliano's first theorem (ii) Castigliano's second theorem
(10 Marks)
b. A cantilever beam of uniform cross-section carries a point load at the free end. Determine strain energy and deflection at the free end, if $\mathrm{F}=200 \mathrm{kN}, \mathrm{E}=200 \mathrm{GPa}, \mathrm{L}=3 \mathrm{mt}$ and $\mathrm{I}=10^{-4} \mathrm{~m}^{4}$.
(10 Marks)

OR

10 a. Explain maximum normal stress theory and maximum shear stress theory.
(10 Marks)
b. A machine member made of C40 steel having the yield stress of 328.6 MPa is loaded as follows. $\sigma_{\mathrm{x}}=60 \mathrm{MPa}, \quad \sigma_{\mathrm{y}}=-20 \mathrm{MPa}$ and $\tau_{\mathrm{xy}}=30 \mathrm{MPa}$. Determine the factor of safety by (i) Maximum normal stress theory (ii) Maximum shear stress theory.
(10 Marks)

